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I-V characteristics of 2~ arrays of ultrasmall normal tunnel 
junctions 
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South Ellis Avenue, Chicago, IL 60637, USA 

Received 8 June 1993 

Abstract. This paper presents simulation results on the dynamics of ZD arrays of ulVaSmall 
normal tunnel junctions P finite temperature, focusing on the possible Kosterlilz-Thouless- 
Berezinskii transition of charge unbinding. In the case of an m a y  with zero self-capacitance, 
we find a reasonable agreement between simulation resulu and the theory. We perform finite- 
sile scaling analysis for linear and non-bear conductances. We also study the effects of self- 
capacitance and random fractional offset charges, which may be relevant lo the experimental 
situation. In bath cases. linear conductances show activaled behaviour. A random charge 
distribution with relatively strong disorder could explain theexperimental values of the activation 
barrier energies. 

1. Introduction 

Recent developments in micro-fabrication technology have made it possible to observe 
the so called Coulomb blockade effect in normal or superconducting junctions with crass 
sections of the order of (1 p n ) Z  or less, at temperatures of the order of 1 K, provided that 
the Coulomb charging energy -, e2/2C due to the tunnelling of a single electron is bigger 
than the thermal or quantum fluctuation energy [l]. These conditions can be represented 
respectively as 

kBT << e2/2C h/&C << e2/2C (1.1) 

where e denotes the charge of an electron and RT and C are the tunnel resistance and 
capacitance of a single junction respectively. We see that the second condition requires that 
the tunnel resistance be much larger than the quantum resistance RQ 

Averin and Likharev [2] developed a semiclassical theory of single-electron tunnelling 
using a density matrix approach. The main result is that, for a single junction in the current 
driven situation and in the limit of large resistance RT, we can describe the tunnelling 
processes of electrons by the following stochastic tunnelling rate, which depends only on 
the energy difference of the system before and after tunnelling of an electron. That is, 

(1.2) 

where r is the tunnelling rate and A E  is the energy difference of the system before and 
after tunnelling. I ( V )  denotes the I-V relation for a voltage driven single junction, which 
can be represented by an ohmic relation, I ( V )  5 VIRT. Extension of this formula to the 
case of arrays of junctions under general driving conditions has been made. It has been 

h/e2 .  

r = [ I ( A E / e ) / e l [  1 - exp[-AE/k~T]]-' 
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argued that the so called global rule of tunnelling applies where we can obtain the rate of 
tunnelling of an electron through a specific junction in the array by substituting for AE 
in the above formula the energy difference (corresponding to the electrostatic equilibrium) 
of the whole array of junctions after a tunnelling event 13-51, Monte Carlo simulation of 
the dynamics of juiction arrays can be performed in a staightfonvard way based on the 
tunnelling rate for each junction of the array [6]. 

The state of the array can be represented by the charge configuration with an integer 
mutiple of the electron charge at each inner metallic island together with some extemal (e.g. 
voltage or current) driving conditions. If the a n a y  is assumed to be uniform, the interaction 
energy between two charges in 2D reduces to a screened logarithmic form in the continuum 
limit, with the screening length proportional to the inverse of the square root of the self- 
capacitance of the metal islands. This is a Coulomb gas system, with its dynamicd law 
given 6y the stochastic tunnelling rates. In the ZD Coulomb gas with unscreened interactions, 
we expect a Kosterlitz-Thouless-Berezinskii transition (hereafter will be referred to as a 
KTB transition) due to charge unbinding at a finite temperature TE 17-13]. 

In this paper, we present some results of Monte Carlo simulations on the dynamics of 
2D square arrays of normal tunnel junctions under voltage driven situations. We compare 
these simulation results with the predictions of KTB transition theory. In the limit of 
zero self-capacitance, I-V relations show features that are reasonably consistent with the 
theory. At the transition temperature T,, we show finitesize scaling of linear and non- 
linear conductances. Simulations on systems with finite self-capacitance show appreciable 
deviatgon from KTB behaviour. In this case, we find activated behaviour of the linear 
conductance. 

Random charges trapped in the substrate layer or junction M e r  can induce fractional 
offset charges on the metal islands [9]. We assumed a Gaussian distribution of offset charges 
and investigated the I-V relations as the charge disorder is varied. Here, appreciable 
distortion of the I-V relations, especially suppression of non-linearities, from those of 
anslys with no disorder is seen. The linear conductance shows activated behaviour with the 
bariier energy decreasing as the charge disorder increases. Activated behaviour in linear 
conductance has also been seen in experimental data [ 12,141. It is shown from simulation 
results that relatively strong charge disorder can explain the experimental results of the 
activation barrier energies. 

2. KTB transition in ZD normal junction arrays 

Consider the potential distribution in a ZD square array of normal capacitively coupled 
junctions (see figure 1) due to a charge distribution. If we denote the charge and the 
potential on island (i, j )  as Q,.j and & j  respectively, we have 

Here, C and Cg are the junction capacitance and the self-capacitance to the ground 
respectively. In typical experimental situations, C is of the order of - F while C, 
ranges from IO-” to IO-’* F. For r >> ro (ro is the lattice spacing) we obtain a continuum 
limit equation for the potential 
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Figure 1. A schematic configuration of azu normal junction m y .  Each island (shaded squares) 
is coupled capacitively (as well as forming tunnel junctions) with its four nearest neighbours 
through a uniform junction capacimce C, and also la the ground Lhmugh self-capacitance C,. 
Each lunnel junction is assumed to have a uniform lunnel resistance Rr. A busbar configuration 
is used for voltage driving. 

with ,Lc k r o m  denoting the bare 'screening length and p(r )  a suitably normalized 
charge density from Qi . j .  

For a sufficiently large bare sceening length, the interaction energy between two charges 
+e and -e separated by r goes as 

E(r) Y (ez/27rC) In(r/ro) + 2p (2.3) 

where 2p denotes the energy needed to produce a pair separated by ro. Here, we have a 
realization of a Coulomb gas system. At low temperatures, charge pairs are bound together 
due to the logarithmic potential of attraction, but at a critical temperature T,, which is 
determined by the relation [7] 

k;T, = [l/4ne(Tc)]e2/2C (2.4) 

pairs begin to unbind due to thermal fluctuations. Here, c(T,) denotes the dielectric constant 
at the critical temperature. The dielectric constant is such that E(T + 0) = 1. Given the 
value of the chemical potential p, the dielectric constant at T close to Tc can be calculated by 
integrating the Kosterlitz RG equation [SI. For infinite square arrays in the limit of vanishing 
self capacitance (i.e., A, = CO), p can be calculated (neglecting the negligible entropic term) 
to be p = 0.25e2/2C (see appendix B for details). Using the Kosterlitz equation, we obtain 
~ B T ,  Y 0.068Ec (E, = e2/2C) which compares very well with simulation results of 0.067Ec 
determined as the temperature where the I-V power exponent becomes equal to three (see 
be low).^ 

We can relate the dielectric constant to the I-V relation power exponent a(T)  defined 
through I Y Vat'' [15,16]. For a Coulomb gas system under a uniform extemal electric 
field E, we can estimate the critical size r, of a pair of unit charges such that the pair can be 
broken .free. In the c& of normal junction arrays, we define the electric field as the average 
voltage per junction (i.e., one lattice spacing ro is the unit of distance). For simplicity of 
notation, we shall assume that the voltage is measured in units of e/C, energy in units 
of E, = eZ/2C and the temperature T in units of EJkB when not explicitly specified. 
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Then we obtain rJro 2: 1/2zE. This means that the energy corresponding to a pair with 
separation r, directed parallel to the field E becomes (we put Ec = 1 here.) 

2peB 2: (I/ZS) h(rc /r0)  +constant Y - ( ~ / x e )  1n(2nE) +constant (2.5) 

where the constant term is independent of E or r,. Since the current I is proportional to 
the density nF of free charges and to E, we obtain 

I n. n p E  2: exp(-.uefi/T)E Y &'fie'+'. (2.6) 

Since the field C is proportional to the overall voltage V ,  we anive at a ( T )  = 1 + 1/2rrtT. 
Combining this with the condition for T,, and using the fact that a(T)  = 1 for T > Tc, we 
can see that a(T)  jumps from three to one as T passes Tc from below. 

3. Simulation results for C, = O  

The simulation method employed was based on the algorithm by Bakhvalov et al 161. By 
manipulating the formula for the energy difference, we can update the potential distribution 
and calculate the energy difference for trial tunnellings without performing mutiplication 
of the inverse capacitance matrix and the charge configuration vector. In this way, the 
computing time for one Monte Carlo step is made linearly proportional to the number of 
sites. Arrays of sizes up to 30 x 30 were used in simulations with a busbar configuration for 
voltage driving (figure 1). Periodic boundary conditions were applied along the transverse 
direction. The number of Monte Carlo tunnelling steps ranged from 2 x  IO5 to lo6 depending 
on the value of the driving voltage. Since the natural time scale for the system is RTC, we 
measure the current in units of e/RTC. 

Figure 2 shows the I-V relations for a uniform 30 x 30 junction array with zero self- 
capacitance at various temperatures. The inset of figure. 2 shows the resulting I-V power 
exponent a(T).  We obtain the exponent a(T)  2: 3.0 for k,T = 0.067EC. This compares 
quite well to the prediction of the Kosterlitz equation (k& Y 0.O68Ec) as mentioned above. 
This corresponds to the dielectric constant c(Tc) 1.17. We see that, at low temperatures, 
there exists a range of voltages where power law behaviour occurs in I-V relations (up to 
V / L  Y 0.2elC). This originates from the fact that the logarithmic form of the inter-charge 
potential no longer holds for distance shorter than the lattice spacing (r < TO). Using the 
relation between the applied voltage per junction and the pair breaking size, we can estimate 
the upper cut-off voltage as V(r ,  = ro)/L E 0.16e/C which is close to the above value 
obtained from the I-V curves. 

On the other hand, the finite size of the array gives a lower cut-off voltage for power 
law behaviour (for T < Tc) because the size of a pair cannot exceed L. For L = 30, we 
obtain VlOw/L 2: 0.005e/C. Below the critical temperature, values of the power law slopes 
a(T)  from simulations agree reasonably well with the prediction of the Kosterlitz equation, 
although at lower temperatures simulation results are systematically a little higher than the 
theoretical values (up to about 10% at T = 0 . 0 3 E c / k ~  Y 0.45Tc). Above Tc, there is some 
ambiguity in determining a(T) due to screening. In the limit of arrays with infinite size, 
we could find the sharp jump in n(T)  across T, by measuring the logarithmic slope at an 
arbitrarily small voltage. However for a finite array, there is a lower cut-off voltage below 
which a linear I-V relation is obtained even below T, because of activation into pairs of 
size L (L is the array size in the direction of the voltage driving). For T > Tc, slopes 



I-V characteristics of 2D arrays of tunnel junctions 8379 

I 
0 -12L 
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log,o CC"/d/(e/c)l 

Fignre 2. I-V relations for 30 x 30 "ray with C, = 0, for temperatures ksTIE,  = 0.03 
( I ) ,  0.0375 (2). 0.045 (3). 0.0525 (4). 0.06 (5). 0.067 (T = T,) (a, 0.075 (7), 0.09 (8). and 
0.11 (9). The full lines are only guides to the eye. The inset shows I-V power exponenls 
a(7) for dtfferenr temperalures (for T < I, measured at VIL 2 O.W/C and for T > Tc at 
VIL 5 O.Ole/C) f" simulations on a 30 x 30 "ray (diamonds), a 20 x 20 may (triangles) 
and KTE theory predictions (full line). 

measured at applied voltage V / L  2 O.Ole/C are shown (inset of figure 2). We can see a 
broadened transition into linear I-V relations. 

Next consider the linear conductance of junction arrays with vanishing self-capacitance. 
In the limit of infinite size of the array, for temperatures below Tc, all charges are bound, 
thus the linear conductance (which will be denoted by G) vanishes in this case. For T > Tc, 
KTB theory gives the well known square root cusp form for the conductance of an array 
with width W and length L 

where b is a constant of the order of unity and Go is of the order of - I /RT (RT is the tunnel 
resistance of a junction). Indeed our simulation results (from I-V curves of 30 x 30 arrays) 
showed a square root cusp form for the linear conductance (these were obtained from an 
average over three or four values of I / V  for applied voltages between V / L  = 0.002e/C 
and V / L  = 0.007e/C) and we could obtain an estimate of U, N 2.1. For comparison, 
simulations by Bobbert et a! [13], obtained 2b N 1.8, which approximately agrees with 
the present result. This value should not be taken too seriously, because the square root 
cusp form is valid only for temperatures near Tc, i.e., for (T - Tc)/Tc << 1 in the limit of 
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large arrays, while some of our simulation data points lie outside this domain of validity. A 
theoretical estimate based on our value of the chemical potential p gives 2b N 4, which is 
about twice as large as our simulation results on 30 x30 arrays. This discrepancy is probably 
due to the fact that the size of the array (30 x 30) is still smaller than the screening length 
near T,, and that our simulations overestimate the real (large L-limit) linear conductance in 
this region. 

For a finite-size array, there is a non-vanishing linear conductance even for temperatures 
below Tc due to thermal activation of charge pairs with the size of the array L (in the 
direction of the voltage driving). At temperatures below T,, the energy to create a pair with 
size L is (again putting E, = 1) 

(3.2) 

where 7.p is the chemical potential for creating a pair with the size of a lattice spacing ro. 
In the case of a finite-size array with length L (and with an arbitrary width W), these pairs 
become free and the effective numbex density of free charges that are created by thermal 
activation will behave as 

2Er. zz ( I / R E )  In(L/ro) +2p 

(3.3) nF Y exp(-EL/T) Y (I/L) IJ2neT . 

If we deal with junction arrays with the same width and length (W = L), the size dependence 
of linear conductance of an array will depend on L as 

(3.4) 

Hence, if we define GL N L-'"' then we see that z ( T )  = 1/2ncT for T 6 Tc and in 
particular at T = T, we obtain ~(7,) = 2 from the condition for Tc. Also we expect 
a(T) = z ( T )  + I from (2.6). 

Figure 3 shows the size dependence of linear conductance at temperatures below or 
equal to Tc using the simulation results on small size arrays (of equal width and length). 
We find a clear power law dependence of the linear conductance on the size of the array 
below or equal to T,. Good agreement is found between z ( T )  + 1 and a(T) near Tc hut 
z(T) + 1 tends to be larger than a ( T )  at lower temperatures (see the inset of figure 3). 

Now let us consider the size dependence of the non-linear I-V relations at the transition 
temperature T, [17]. At T,, the correlation length is infinite and hence, for a finite size array, 
the only relevant length scale is the size L of the array. Suppose that an extemal electric field 
& is applied to the array. Then the typical scale of free energy change due to the coupling of 
the system to the extemal field is eEL. This corresponds to the thermal fluctuation energy 
k,T, when E is equal to Et with 

G ' E ( l / L )  1/2RcT . 

Et = kBTc/eL. (3.5) 

If we hypothesize finite-size scaling for the I-V relation, i.e., that the current density J is 
a homogeneous function of & and L-I (or 4). then we obtain the following ansatz form of 
the I-V relation: 

f (e&L/ksTd (3.6) 

where f is the scaling function and z(TJ = 2 from KTB theory. We can see that f (x) + 
constant as x -+ 0 in order to match the finite-size scaling behaviour of the linear 
conductance at Tc, and in the limit of large L,  we recover the relation I Y V1+z'TJ = V3.  

Figure 4 shows a finite-size scaling plot of I-V relations at T = T, for L x L arrays 
with L = 3.4.5, I. 9, where we find a good collapse of the I-V relations with a choice of 
the parameter z(T,) = 2.0 that agrees very well with the KTB theory. 

J EL-ZVC) 
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L 
Figure 3. SE dependence of linear conductances for T < T,; kBT = O.WE, (diamonds). 
keT = 0.05Ec (hiangles), keT = 0.O545Ec (crosses), ileT = 0.O6Ec (squares), and 
ksT = 0.O67Ec (stars). The inset shows a wmpanson between A T )  + I (diamonds, see 
the text For definition) and o(T) (squares) from measurements of I-V power exponents, rs well 
as the KTB theory result for a ( T )  (full curve). 

4. Effect of self-capacitance and random offset charges 

There always exists some finite self-capacitance C, in the array in real experimental 
situations due to the capacitive coupling between the metallic islands and the ground plane. 
This will give a bare screening length Ac = r o m  which approximately sets the limit 
of the length scale where logarithmic interaction is valid. In the rigorous sense, there is 
no phase transition in the case of an array with finite C,, even though some features of 
broadened transition might remain if C, << C. 

Figure 5(a) shows the I-V curves of 20 x 20 arrays for the case of self-capacitance 
C, = 0.01C. In this case, the bare screening length is A, = IOro, which is smaller 
than the array size. Due to this finite bare screening, even at low temperature, the I- 
V relations do not show features of well defined power law slopes, even though there 
exists an appreciable portion of the range of the applied voltages where the slope can be 
determined quite precisely. Figure 5(b) shows the corresponding I-V power exponent 
o(T)  for C, = 0.01C evaluated at two different scales of the applied voltage, one at 
V/L 2: O.Ole/C and the other at V/L N 0.04elC. The latter gives approximately the 
maximum power law slope. We can see that there exists an appreciable dependence of 
the power law slopes on the scale of the applied voltage and that these slopes show some 
suppression from the results of KTB theory. As C, increases, this suppression was found 



8382 Sung Jong Lee 

n - 
t" 0 -  

3 

3 -2-  

N A . 
1 

l- -1- 
a 
;I 
Y 

U 

0 - 
A 

Fwre 4. Scaling plot of non-linear conductance (I-V relation) at T. for arrays with sizes 
L x L ( L  = 3.4.5. I .  9). The inset shows the raw dala for I-V relations. 
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Figure 5. (U) I-V relations for C, = 0.01C for temperatures ranging f" T = 0.03EJk~ 
LO T = O.l lE, /k~ .  The full lines are only guides to the eye. ( b )  I-V power exponent a(T )  
versus temperawe for C, = 0.01C wit!! slopes measured at V / L  2 O.W/C (squares) and 
V f L  = O.Ole/C (~angles). The full cume shows the KTB theory. 

to be bigger. In particular, near the temperature at which the pure KTB system (C, = 0) 



I-V characreristics of 2D arrays of runnel junctions 8383 

undergoes a KTB transition, a(T)  shows a rather featureless broadening without passing 
through the value a(T)  = 3. 

b.. C,/c =0.025 162 
P., 

lo3 *'\. 

E,= 0.6 E, 
'.. 

10" 

10 15 20 25 30 35 

Ec/ kbT . .. .. .. 
Ec/kbT 

Figure 6. ( U )  Linear canductance versus inverse temperature of a 20 x 20 anay for C, = 0.01C. 
The bmken line is an activation tit with E, 2 0.66Ec. (b)  Linear conduclance versus inverse 
temperature of a 24 x 24 m y  for C, = 0.025C. The broken line is an activation tit with 
E. ~ 0 . 6 E , .  

Figure 6 shows the linear conductance versus temperature. We can see an approximately 
activated behaviour with activation barrier energies E,(C, = 0.01C) N 0.66Ec and 
E,(C, = 0.025C) N 0.6~5,. These values can be interpreted roughly as the energy (per 
particle) needed to create a pair of charges with the size of the screening length. If we 
denote this by E,, then we obtain 2Ep N ( E e / n e e ~ )  In(A,/ro) + 2.4 with E& the effective 
dielectric constant and A, the screening length. By putting eeff N- 1 (at low temperature), 
we obtain Ep(Cg = 0.01C) N O.62Ec and Ep(Cg = 0.025C) N 0.54Ec. These values are 
fairly close to the values of activation barrier energies given above. 

The size dependence of conductance (for L x L arrays with L = 3.4,. . . ,20) is 
shown in figure 7 at temperature T = 0 . 0 3 E J k ~  for three values of the self-capacitance, 
C, = 0.1 IC, 0.025C. and 0.01C. These correspond to bare screening lengths of & Y 3r0, 
6r0, and lor0 respectively. We can see that the power law dependence of the conductance 
on array size ceases to hold near the scale of the bare screening length. Eventually the 
conductivity will tum into a constant plateau at large L. The inset of figure 7 shows 
an attempt to fit these size dependence of the linear conductance into a scaling form of 
C ( L )  = L-'g(L/h,) with a choice of z = 5.6. We can see only a rough scaling behaviour. 
This may be attributable partly to the fact that we used the bare screening length h, as the 
scaling pameter ,  while more accurate treatment should use the effective screening length 
(due to the finite-temperature effect), which is not easy to estimate. 

MOOG et a1 [9]  pointed out the existence of random fractional offset charges induced on 
islands due to, for example, trapped charges in the substrate layer or the dielectric tunnel 
barrier of the array of islands. If we imagine that a trapped charge polarizes both the 
metal island and the ground electrode, then the junction area will have some fractional 
charges induced due to the polarization. We can model the system by simply assuming that 
there exist some (quenched) random fractional charges on metallic islands. This is a dual 
analogue of Josephson junction arrays under random magnetic frustration as dealt with by 
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L 
Figure 7. Size dependence of the linear conductance at T = 0.O3EG/ks for C, = 0.11C 
(diamonds). 0.015C (squares), and 0.01C (eiangles) reqectively. The full lines are only guides 
10 h e  eye. 

Granato and Kosterlitz 1181. They showed that the KTB transition is destroyed by this kind 
of disorder. 

Suppose now that the distribution of random charge on each island has a Gaussian 
distribution with an RMS width of Q R ~ ,  that is P (4) CI exp(-q2/2QiMs) where P (4) 
denotes the probability density for finding a random fractional charge q on an island. Then, 
the average net charge within an area dZ goes as Q, N Q R M ~  where N Y (dlro)’ is 
the number of sites within an area of linear size d. Thus, we obtain 

Qd E QRMsd/ro. (4.1) 

Hence the effect of a charge e will be washed out at a distance dc such that Qmsdc/ro = e 

Figure 8(u) and (b)  shows the I-V relations of 16 x 16 arrays for Q- = O.le 
(4 = IOro) and Q R ~  = 0.25e (dc = 4ro) respectively. The self-capacitance is assumed to 
be zero here. We emphasize that the latter case is rather close to the maximal disordered 
situation which can be taken as that of random charges distributed uniformly between 
-0.5e and +0.5e. For the case of moderate disorder QRMS = O.le, the I-V curves show 
an interesting feature with the power law slope varying smoothly from linear behaviour into 
some non-linear one as the applied voltage increases. As the charge disorder is increased 
to Q R W ~  = 0.25e, the non-linearity of the I-V curves is suppressed significantly. Typical 
power law slopes extracted from around V/L N 0.04e/C are shown in figure 8(c) for both 
cases of the charge disorder, where we can confirm the trend of the suppression of the I-V 
non-linearity as the charge disorder increases. Also, this suppression is much more effective 
than in the case of non-zero C, only, especially at lower temperatures. 

Figure 9(u) shows the linear conductance versus temperature of these arrays as well as 
a 16 x 16 array with maximal disorder (as defined above), where we find thermally activated 

or dc = rO(e/QrtMs). 
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- Figure 8. ( U )  I-V relations of a 16 x 16 array with 

random ofkt charges QRMS = 0.k. The temperature 
ranges from 0.03EJke to O.oBE./kB. The full lines 
are only guides to the eye. (6) I-V relations of a 
16 x 16 array with random offset charges QRMS = 0.ZSe. 
The temperature ranges from 0.025EC/ks 10 0.08Ec/ke. 
m e  Full lines are only guides to the eye. (c) u(T)  
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Figure 9. (U) Linear conductance versus inverse temperature of a 16 x 16 array: Q n ~ s  = 0.k 
(squares, 1); Qws = 0.25e (Iriangles, 2): maximally disordered array (stars. 3; random charges 
distributed uniformly beween -0.Se and 0.5e). The numerical e m  are about the size of the 
symbols. The broken l ies  fa activation fits with & 2 O.37Ec (1). E.. 0.22Ec (2). and 
E, E 0.16Ec (3). (b) A comparison teween simulation results (squares, linear conduuance 
versus inverse temperature for a 16 x 16 array with Q ~ h ( s  = 0.22~ the numerical errors are 
about Ihe size of the symbols) and experimental mults (lines) by ligbe el a1 I141 of linear 
conductance measuremenls on two samples of 50 x 70 junction arrays. Shown here are only 
the activation fits to the experimenlal data (not the raw data) for lwo sample arrays with Rr = 
38 kn. EJka = 2 2  K (I) and RT = 126 kS2. E,jke = 25 K (2) (with permission from ET T 
Tighe). 

behaviour with activation barrier energies = 0.k) = 0.37E,, &(QRMS = 
0.2%) Y 0.22EC, and E, (maximal disorder) 0.16Ec. Here we note that the activation 
fit in the case of charge disordered arrays works better than that in the case of finite C,. 
We can see that charge disorder is more effective than finite C, in reducing the activation 
barrier energy, even though we do not have a quantitative theoretical estimate for the 
activation energies in case of charge disorder to compare with above simulation results. We 
also calculated the linear conductance for small size arrays with Gaussian charge disorder. 
However, we could not obtain a smooth behaviour in the size dependence of the linear 
conductance due to lack of self-avenging in the case of small arrays with quenched charge 
disorder. 

In one experiment by the Delft group on a sample of a 190 x 60 m y  with C, c 0.01 C, 
activated linear conductance with a barrier energy of E, = O.X& was reported. More 
recently, Tighe er al 1141 obtained similar values for a few sample arrays of 50 x 70 normal 
tunnel junctions made of aluminum islands. In these experiments, the self-capacitances 
were a few times 0.001C (hence a little less than the 0.01C of our simulations). One 
interesting experimental result is that samples of arrays with different values of junction 
capacitances ranging by about a factor of four all showed similar values ranging from 0.23 
to 0.27 for the ratio E./& (Ec = e2/2C). These values are much smaller than the 0.66Ec 
that we obtained from our simulations on a 20 x 20 array with the self-capacitance effect 
only (using C, = 0.01C). This suggests that an additional effect of random charge disorder 
would be necessary to explain this suppression of the barrier energy in the experimental 
results. This can be seen in the above examples of simulations on arrays with random charge 
disorder, where we obtain a more effective reduction of the activation barrier energy and, in 
particular, the strongly disordered case of QRW = 0.25e gives rise to an activation barrier 
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energy of O.22Ec that happens to be rather close to the experimental values cited above. 
Figure 9(b)  shows a comparison between simulation results (squares, linear conductances of 
16 x 16 arrays with QRMS = 0 . 2 2 )  and the experimental results of Tighe et al cited above. 
The two l i e s  are activation fits to the linear conductance data (raw data are. not shown 
here) for two samples, rescaled by the tunnel resistances RT and the charging energies 
Ec of the two samples. We can see that both samples show approximately the same 
value (- 0.23) for the ratio Ea/Ec. Simulation results of the linear conductances for 
this case of Q R M ~  = 0.2% agree approximately with the experimental data especially at 
lower temperatures, even though the activation energy Ea rz O.26Ec from simulations is a 
little higher than the experimental value of 0.23Ec. 

One possibility to explain the experimental result that the ratio EJE,  is approximately 
constant is that the similar fabrication process of these arrays may induce roughly the 
same value of charge disorder (ems around 0.22e-0.24e) that corresponds to the observed 
activation energy. Note that the same value of QRMS gives rise to the same ratio of 
Ea/Ec independent of the magnitude of the junctlon capacitance C. However, more 
precise determination of the array parameters, especially the junction capacitance would 
be necessary for obtaining a more reliable magnitude of the charging energy Ec (and hence 
of E J E , )  in the experiments and understanding the physical origin of the activation barrier 
energies. Also needed are detailed measuremens of I-V relations in the non-linear regime 
(especially at low temperature) that can be compared with simulations in order to put a 
more stnngent test on the relevance of charge disorder in the dynamics of the arrays. 

5. Conclusions and discussion 

In this paper, we have presented results of Monte Carlo simulations on the dynamics 
of ZD square arrays of ultrasmall normal tunnel junctions in connection with a possible 
KTB transition and the effect of self-capacitance or charge disorder. For systems with 
zero self-capacitance, reasonable agreement is found with KTB theory especially below T,, 
including the I-V power exponent a(T)  for T < T, and finite-size scaling of the non-linear 
conductance at Tc. However, it appears that the size of the arrays used in simulations 
(30 x 30) is not large enough to identify the sharp jump above Tc. Also, even though a 
square mot cusp form of the linear conducsance seems to hold approximately, the coefficient 
2b obtained from simulations turns out to be only about half of a theoretical estimate for 
infinite arrays. 

Finite seff-capacitance or random offset charges are shown to induce appreciable 
deviation from KTB behaviour in the characteristics of I-V curves. In both cases, activated 
behaviour of the h e a r  conductance is seen. Quantitatively, it would be difficult to compare 
the simulations with experimental results, because the exact value of the charge disorder is 
not known for experimental situations and also because there is a certain limitation in the 
determination of the precise values of the junction capacitances and the tunnel resistances. 
However, simulation results show that charge disorder is effective in reducing the activation 
barrier in linear conductance and that a random charge distribution with relatively strong 
disorder can possibly explain the experimental values of the activation barrier energies. In 
this regard, the measured values of activation barrier energies in experiments might serve 
as an indirect measure of the charge disorder for the arrays. 
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Appendix A. An efficient method for updating the potential distribution and evaluating 
the trial tunnelling energy 

Let us first consider the change of potential distribution when tunnelling from site ri to 
site rf occurs. Using the charge-potential relation equation (Z.l), and the fact that only the 
charge at sites ri and rf changes (by a unit charge &e), we can easily obtain the following 
relation: 

where 4'(r) and +(r)  denote the potential at site r after and before the tunnelling respectively 
and f is the capacitance matrix defined through equation (2.1) rewritten in a matrix form. 
Note that r,  r,, and r, should be understood as the discrete indices for the sites of metal 
islands. Equation (AI) holds for the case when both rt and rf are inner islands. When edge 
electrodes are involved, we can simply omit the corresponding (inverse) capacitance matrix 
element. One can see that the potential can be updated by simply using the (stored) two 
matrix elements for each site. Hence we do not need to multiply the inverse capacitance 
matrix by the charge configuration vector at each tunnelling step. 

Next, we need a formula for the energy difference for a trial tunnelling from site. ri to 
rf. From simple electrostatic considerations, we have 

AE(ri + r f )  = (e/z)[+'(rf) f @(rd - @'(ri) - Wdl. ( A 3  

If we use the previous relation equation (Al), then this becomes 

Here again, we see that only the 'old' potential @(r)  and two elements of the inverse 
capacitance matrix are needed to calculate AE for each trial tunnelling. Hence, at the 
beginning of each Monte Carlo step, we can prepare the initial potential, and then we can 
evaluate the transition rates for all trial tunnellings using the energy given by equation (A3). 

Appendix B. Chemical potential for creatihg a pair 

Here, we consider an evaluation of the energy cost for creating a pair of charges +e and --e 
with separation of a unit lattice spacing ro. We assume that the array consists of a L x L 
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square lattice of normal metal islands with a periodic boundary condition imposed on both 
directions for convenience of calculation, 

Junction capacitances are uniform and equal to C and each island has a uniform self 
capacitance C, to the p u n d .  The charge-potential relation is the same as equation (2.1), 
and can be. concisely written as 

E + = &  (B1) 

where e abbreviates the capacitance malrix and + and Q are the potential and charge 
distribution vector, respectively. 

By using Fourier 
representation, it is simple to obtain 

An important quantity is the inverse capacitance matrix e-'. 

Here, (x, y) and (x' ,  y') are. the integer Cartesian coordinates of r and r' respectively in units 
of ro. Using the result of appendix A, the energy needed to create a pair at separation of a 
unit lattice spacing is 

where TO denotes a unit lattice vector. 
Therefore, using the expression for e-', we obtain in the limit of infinite size of the 

anaY w 4 00). 

In the limit of C, + 0, we obtain 

In general. we can express p in terms of elliptic integrals as follows: 

where K ( x )  denotes the complete elliptic integral of the first kind. 
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